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Abstract

Sparse Autoencoders (SAEs) are widely used to interpret features encoded in the
embeddings of transformer-based Language Models. Despite widespread adoption,
there are limited techniques that provide a fine-grained evaluation for SAEs. This
paper proposes delta selectivity, a metric that captures the performance of SAEs
at feature-level granularity. Using this metric, it is possible to evaluate SAEs on
a defined set of features relevant to their end-use. We implement delta selectivity
on all the layers of Pythia’s 160m and 410m models using 14 predefined features.
We demonstrate the effectiveness of the metric and highlight cases where delta
selectivity disagrees with reconstruction loss, which is traditionally used to evaluate
SAEs. We open-source our code so that other researchers can augment their studies
using the delta selectivity metric.

1 Introduction

Specialized evaluation tasks have been developed to assess Large Language Models (LLMs) on
various attributes—such as coding, math problem-solving, common sense, morality, etc. When a
specific task is defined, we rely on these targeted evaluations to select the most capable LLM. We do
not have this luxury for Sparse Autoencoders (SAEs).

Typically, SAE evaluation involves analyzing the reconstruction-sparsity frontier using mean-squared
error for reconstruction loss (or some variation) and LO/L1 for sparsity. Apart from this, confidence in
SAEs comes mainly from the manual studies that use human raters/experts to assess the quality of the
explanations generated by the SAEs. Recently, researchers have been using LLMs to automatically
generate and validate natural language explanations. While this has been successful so far, we don’t
have any targeted techniques to evaluate SAEs on their ability to capture the features of interest.

SAEs are presently used for several purposes, including ones critical for Al safety, like unsafe query
detection and prompt refusal. In this paper, we propose a metric called delta selectivity that can
measure how well an SAE captures a given feature. This metric allows targeted evaluations and
the development of a general evaluation suite containing a wide range of features that can be used
for fine-grained SAE benchmarking. Fine-grained SAE benchmarking allows researchers to deeply
understand the implications of SAE architectural choices. For instance, researchers can use delta
selectivity to pinpoint the features that are better captured by adopting a different activation function.
The analysis does not have to be restricted to the reconstruction-sparsity tradeoff.

The contributions of this paper are as follows:

* Proposes the delta selectivity metric, that can be used for fine-grained SAE evaluations.

* Uses a subset of previously adopted probing datasets [8]] to demonstrate the metric and
analyzes its relationship with traditional reconstruction loss.

* Publishes an open-source codebase that can be used to compute selectivity on a given set of
features: https://github.com/Pratik-Doshi-99/delta-selectivity-saes
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2 Related Work

2.1 Sparse Autoencoders

Language Models (LMs) are able to pick up millions of features observed in the training corpus and
effectively compress them into a few thousand embedding dimensions available to them. This is
famously called the Superposition Hypothesis. As a result of such compression, a single neuron must
represent several (often unrelated) features. This idea is called Polysemanticity. Polysemanticity
works because the features represented occur sparsely in the training corpus. For instance, consider
a feature that represents programming languages and another that represents legal ethics. These
features are largely unrelated, and it is unlikely that they will occur together in a token sequence. This
allows LMs to encode both these features using the same neuron. The LM can distinguish between
those concepts on the basis of other neurons that may encode concepts related to programming or the
legal profession. In general, polysemanticity makes LM interpretability noisy.

Sparse Autoencoders (SAEs) have been widely adopted by the Mechanistic Interpretability community
because they remedy Polysemanticity. [5] found that SAEs were able to extract relatively mono
semantic features (a neuron represents a single feature). Subsequent research was done to improve
the activation functions for SAEs. [7] introduced the Top-k SAE, and [10]] proposed the JumpReLLU
activation function and a method to train SAEs using that activation function. In this paper, we use
Top-k SAEs to evaluate the delta selectivity metric.

SAEs can be thought of as a high-dimensional linear layer (whose dimensions are in multiples of the
dimensions of the model) trained to be sparse and reconstruct the activations of the model (harvested
from a particular point in its forward pass). SAEs provide the necessary bandwidth (large dimensions)
and incentive (sparsity regulation) for the model to express its features in a relatively monosemantic
fashion.

Mathematically, it looks like:
f(x) := 0 (WeneX + benc) 0
i(f) = Wecf + byec
where x is the input activation, X is the reconstruction of the input activation, and o is the activation
function. In the case of TopK SAEs, the activation function picks the K-largest latents, and sets the
rest to 0.

2.2 Evaluating Sparse Autoencoders

SAEs are trained on two objectives: sparsity and reconstruction. Reconstruction incentivizes the
SAE to capture more information (features) from the model’s activations. Sparsity incentivizes the
SAE to focus on the dominant features by becoming an information bottleneck. Both objectives are
in tension with each other. SAEs are evaluated on the basis of the reconstruction-sparsity tradeoff
associated with them. Following are the top metrics used to assess SAEs:

* Reconstruction Loss: It is computed as the mean-squared error between the input activations
of the model and the reconstructed activations produced by the SAE. This metric is usually
computed on a per-token basis and aggregated for the entire evaluation dataset. [10] uses
a normalized variant obtained by dividing reconstruction loss with the reconstruction loss
obtained by always predicting the dataset mean.

* Downstream Loss or Delta LM Loss: This metric involves replacing the LM’s activations
with those reconstructed by the SAE and evaluating the impact on the cross entropy loss or
Kullback-Leibler (KL) divergence of the LM. Both [[10] and [7]] evaluate using this metric.

e L0: L0 is a standard method of evaluating the sparsity of SAEs. It is a count of the number
of non-zero latents in the SAE (f(x) from (I)). [10] uses LO, both to evaluate and train
the SAE. [7]] does not use any sparsity metric because TopK by itself is a strong sparsity
guarantee.

e LI: L1 is usually used to train SAEs because it provides a gradient signal. L0, by itself,
cannot provide a gradient signal ([[10] uses Straight Through Estimators for this purpose).
L1 is computed as the sum of absolute values of the SAE latents (f(x) from (T})).



* Probe Loss: [1] fits 61 1D probes on the SAE latents to assess how well can the annotated
features be predicted using the SAE latents. There is a strong assumption about the presence
of the feature when using this metric. Delta selectivity is conceptually similar to probe loss
but overcomes the inherent assumption.

Despite these metrics, manual interpretability studies are the most common way of evaluating SAEs.
Recently, there has been a rise in automated interpretability, where researchers use LLMs to both
generate natural language explanations and evaluate those explanations.

Delta selectivity provides a data-driven method to evaluate SAEs. It can help identify SAEs with
poor reconstruction of the feature of interest and reduce the need for manual interpretability. It
uses probing datasets (feature-annotated datasets) and evaluates the ability of the SAE to predict
the feature in comparison to the model’s ability to predict the same feature. By comparing it with
the model, it is possible to overcome the assumptions of the probing loss metric. If a feature is not
present in a particular layer, the model’s activations would not be able to predict it either. In this way,
a low delta selectivity almost exclusively means poor SAE reconstruction.

2.3 Probing

Probing is a mechanism to determine whether the inner representations of a deep learning model
encode a given feature of interest. It was initially proposed by [1]] and uses a classifier to predict
an annotated feature, given the inner representation of the model. High classification accuracy is
evidence of the presence of the feature in the model’s representations. In this paper, we compare
the probing accuracy of the SAE with that of the model. This tells us how much of the feature
information was lost in the SAE.

[2] discusses the promises and shortcomings of probing classifiers. The author highlights the problem
of memorization. This problem occurs when the classifier is powerful enough to memorize the (inner
representation, feature label) map. It is able to achieve high accuracy due to such memorization, not
because the inner representation contains the feature. [9]] proposes the idea of selectivity. Originally
proposed for NLP tasks, selectivity utilizes a control task to prevent memorization from corrupting
the probe’s accuracy. We explore this idea in more detail in the section on Delta Selectivity.

3 Delta Selectivity

3.1 Selectivity

Probes are supervised classifiers that predict the properties of data using the representations of a
model. Such classifiers can achieve high accuracy either because

* the representations encode the properties of the data, or

* the classifier just learned the task at hand (problem of memorization).
[9] proposes the use of control tasks to solve this problem. A control task is another probe that is fit on
randomized feature labels. Performance in the control task can be solely attributed to memorization
(since the target labels are randomized). An ideal probe would have high task accuracy and low

control task accuracy. Selectivity is the difference between the task accuracy and the control task
accuracy.

For our purposes, we define selectivity in the following way:
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where [ and ¢ represent the layer and token position, x; ; is the activations/embeddings, y; ; is the
binary feature, y; , is binary feature with the class labels randomized (class frequency maintained), g
and g are the task and control probes respectively.

3.2 Delta Selectivity

Delta selectivity is the difference between the selectivity of the LM and that of the SAE. Formally:
DeltaSelectivity(z;, 0;) = Selectivity(f(x;),0;) — Selectivity(x, 0;) 3)

where [ and ¢ represent the layer and token position, x; ; is the activations/embeddings, y; ; is the
binary feature, y; , is binary feature with the class labels randomized (class frequency maintained), g
and g are the task and control probes respectively.

3.3 Delta Selectivity

Delta selectivity is the difference between the selectivity of the LM and that of the SAE. Formally:
DeltaSelectivity(z;, 0;) = Selectivity(f(x;),0;) — Selectivity(x, 0;) 4)

where f(z;) comes from (I), Selectivity(f(z;),0;) is the selectivity of the SAE and
Selectivity(z;, 6;) is the selectivity of the model, §; refers to the class labels for feature j. Notice
how we ignore the ¢ dimension. In practice, we aggregate multiple token positions and calculate delta
selectivity as if it were a single token. This aggregation depends on the feature under consideration.
For instance, features relating to code syntax occur only at certain token positions in the sequence.
When computing delta selectivity, we have a tensor of shape [samples, relevant_token_positions,
embeddings], which we convert to [samples * relevant_token_positions, embeddings]. We adjust the
class labels accordingly.

3.4 Evaluation Methodology

We demonstrate delta selectivity on all the layers of Pythia-160m and Pythia-410m Language Models
[4] and contrast them with the traditional reconstruction loss. In doing so, we present a detailed
analysis of delta selectivity across all the layers of the two models, using 14 binary probes across
5 datasets from [8]]. The architectural details of the LMs and the SAEs used in this paper are
summarized in Table 1. The binary probes and the datasets are summarized in Table 2.

The models, SAEs, and probing datasets must be compatible with each other. The selected SAEs
must be trained on the activations of the selected models, and the probing datasets must be from the
corpus used to train the SAEs. In our case, the models and SAEs are trained on the Pile [6], and the
probing dataset is also a subset of the Pile. Given these requirements, the Pythia family of models
was the best fit. We use the pretrained SAEs from the sparsify library [3] for computations. In the
future, as and when pretrained SAEs are available, we will extend this analysis to the larger models
of the Pythia family, like the 6.9B variant.

4 Results

Experiments-wide Correlation: We perform a comparative analysis to understand whether delta
selectivity scores of the SAEs are correlated to traditional reconstruction loss. Across all layers of
both models, and all datasets, the correlation is 5%. Figure 1 shows a scatter of the two metrics.
There seems to be no predictable relationship between the two metrics. The absence of such a
relationship is a preliminary indicator that the delta selectivity metric provides substantial information
that we do not get from traditional reconstruction loss.

Figure 1 makes the case for delta selectivity. Let’s focus on quadrants 1 (positive delta selectivity,
high reconstruction loss) and 3 (low reconstruction loss, low delta selectivity). A majority of the plot
lies in these two quadrants. This means that in a majority of cases, one of the following happens:

* We successfully capture features (positive delta selectivity), but reconstruction loss is also
high.



Table 1: LMs and SAEs used in this paper

Model/SAE Layers Dimensions Description

Pythia-160m 12 768 A decoder-only transformer, trained
on the Pile [6]

Pythia-410m 24 1024 A decoder-only transformer, trained
on the Pile [6]

SAE-Pythia-160m 12 32768 A series of SAEs trained on the ac-

tivations of every layer of Pythia-
160m. Each SAE is trained on 8.2
billion tokens from the Pile [6]].
SAE-Pythia-410m 24 65536 A series of SAEs trained on the ac-
tivations of every layer of Pythia-
410m. Each SAE is trained on 8.2
billion tokens from the Pile [6]].

 Reconstruction loss is low (which would imply high fidelity), but we still lose features (delta
selectivity is negative)

In both these cases, merely relying on reconstruction loss is misleading.

Traditional Reconstruction Loss vs Delta Selectivity
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Figure 1: A scatter of reconstruction loss and delta selectivity. The plot confirms the absence of any
predictable relationship.

Correlations by Model: We analyze the correlation between reconstruction loss and delta selectivity
separately for both models. As shown in Figure 2, there is a stark difference between the two
models. The correlations are stronger for the smaller variant, as compared to the larger variant. The
distribution of delta selectivity doesn’t vary between the two models as much as reconstruction loss
does. The variation in the reconstruction loss explains why the correlations behave differently for
different model sizes. A deeper analysis is required across multiple model sizes to understand the
reliability of both metrics.

Table 3 contains the correlation between reconstruction loss and delta selectivity for each feature.

5 Conclusion

This paper proposes delta selectivity, a metric that captures the performance of SAEs in the wild.
Using this metric, it is possible to evaluate SAEs on features that are of prime importance. We
also show that this metric bears a low correlation with traditional measures of SAE fidelity, like



Correlation between Metrics, by Model
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Figure 2: Analyzing the correlation between traditional reconstruction loss and delta selectivity,
separately for both models.

reconstruction loss. It is, therefore, an important tool in the interpretability toolbox. We have
quantitative metrics like cross entropy and test set accuracy to evaluate the performance of LLMs.
Despite this, we resort to downstream evaluations because they are closer to the end-use and give a
clearer picture of the suitability of LLMs for a given task. Delta selectivity plays a similar role for
SAEs. At present, we are using SAEs for several Al safety cases, such as unsafe query detection
or prompt refusal. Instead of relying on blanket metrics like reconstruction loss that don’t give
feature-specific results, delta selectivity can help evaluate which SAE can best capture the most
important features for the task at hand.
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Table 2: LMs and SAEs used in this paper

Feature

Dataset

Description

is_football

is_basketball

is_baseball

is_american_football

is_icehockey

is_female

is_alive

is_democratic

is_singer

is_actor
is_politician
is_journalist
is_athlete

is_researcher

wikidata athlete

wikidata athlete

wikidata athlete

wikidata athlete

wikidata athlete

wikidata sex or gender

wikidata is alive

wikidata political party

wikidata occupation

wikidata occupation
wikidata occupation
wikidata occupation
wikidata occupation

wikidata occupation

A dataset of text documents men-
tioning names of popular sports per-
sons, probed at the names of those
persons. The target class repre-
sents whether the person is a foot-
ball player or not.

The target class represents whether
the person is a basketball player or
not.

The target class represents whether
the person is a baseball player or not.
The target class represents whether
the person is an American football
player or not.

The target class represents whether
the person is an ice hockey player or
not.

A dataset of text documents men-
tioning names of popular celebrities,
probed at the names of those persons.
The target class represents whether
the person is a female (1) or male
0).

A dataset of text documents men-
tioning names of popular celebrities,
probed at the names of those persons.
The target class represents whether
the person is alive or not.

A dataset of text documents men-
tioning names of popular political
persons, probed at the names of
those persons. The target class repre-
sents whether the person is a Demo-
crat (1) or Republican (0).

A dataset of text documents men-
tioning names of popular celebrities,
probed at the names of those persons.
The target class represents whether
the person is a singer or not.

The target class represents whether
the person is an actor or not.

The target class represents whether
the person is a politician or not.
The target class represents whether
the person is a journalist or not.
The target class represents whether
the person is an athlete or not.

The target class represents whether
the person is a researcher or not.




Table 3: Correlation between Delta Selectivity and Reconstruction Loss by Feature and Model

Feature Pythia-160m Pythia-410m
is_baseball 0.934187 0.335389
is_football 0.922726 0.540753
is_athlete 0.903483 0.471562
is_singer 0.887798 0.458328
is_american_football 0.859069 0.538522
is_democratic -0.838297 -0.356850
is_basketball 0.827315 0.485343
is_icehockey 0.811831 0.455867
is_politician 0.768349 0.388122
is_journalist 0.684124 0.318750
is_researcher 0.611740 0.532410
is_actor 0.601520 0.574081
is_alive 0.544726 -0.300997
is_female 0.090856 -0.578412
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